

Using System Analysis Methodology To Enhance Efficiency Of Best Management Practices For Capturing Stormwater– Case Study; District Of Columbia

Mohammadreza Jabehdari, LeeRoy Bronner, Ph.D.

Morgan State University Department of Industrial and System Engineering

In partnership with

December 3-6, 2018

Washington, DC Area

- Background
- Objective
- Method
 - System Development Life Cycle (SDLC)
 - Conceptual Model
 - Use Case Model
 - Object-Oriented Model Problem Solution
- Conclusion
- References

Background

Sanitary Sewer Overflow (SSO):

MORGAN

untreated sewage is discharged from a sanitary sewer into the environment prior to reaching sewage treatment facilities.

Combined Sewer Overflow (CSO):

To avoid flood, regulators are designed to let the excess flow, which is a mixture of stormwater and sanitary wastes, be discharged directly into the rivers and creeks.

Background

Location of the SSOs:

2018 Sanitary Sewer Overflows 2017 Sanitary Sewer Overflows 2016 Sanitary Sewer Overflows 2015 Sanitary Sewer Overflows 2014 Sanitary Sewer Overflows

SSOs increasing trend since 2013:

D.C. Water (2018)

D.C. Water (2018)

The environment and scope of the project:

System Development Life Cycle (SDLC)

Problem Definition

- Stormwater runoff pollutes river
- Usable water is wasted by allowing to
 - become stormwater

High Level System Model

Conceptual Model

Use case diagram

Stormwater management		
Policy	Stormwater BMP	Sewer system
Prepare standard operation method and checklists to evaluate contractors	Simulate the amount of runoff for each node	Adapt the sewer system drains with designed BMPs
	Determine appropriate BMP based on the local potential	
	Strategically design network of BMPs	
	Construct BMPs	

MORGAN Use case diagram - Water transfer infrastructure

Enterprise Architect software:

- A graphical tool
- Helps teams build robust and maintainable systems

Use Case Scenarios

	Stormwater BMP			
	Strategically design network of BMPs:			
1.	Manager gives mission to city by new policies to capture stormwater.			
2.	City ask researcher for a comprehensive plan to capture stormwater.			
3.	Researcher simulate the amount of runoff stream for each sewer drain.			
4.	Researcher determine the best type of BMPs for each location based on the physical limits and runoff reduction.			
5.	Researcher prepare documents of required capacity of BMPs for given reliability.			
6.	City approves the requirements .			
7.	Researcher design strategical network of BMPs .			
8.	Researcher prepare type, location, size and material of the			
	BMPs for the City to give it to the contractors.			
9.	Contractor builds BMPs using documents.			
10.	City controls and approves.			

Object Diagram- Capture the Stormwater:

Network of BMPs

Stormwater Practice	Runoff Reduction Rates from Literature (%) ^a
Green Roof	45–60
Rooftop Disconnection	25–50
Raintanks and Cisterns	Amount captured and reused
Pervious Parking	45–75
Grass Channel	10–20
Bioretention	40–80
Dry Swale	40–60
Wet Swale	Less than 10%
Infiltration	50–90
Extended Detention Pond	0–15
Soil Amendments	50–75
Filter Strip; Sheetflow to Open Space	50–75
Filtering Practice	Less than 10%
Constructed Wetland	Less than 10%
Wet Pond	Less than 10%

Hirschman et al. 2008.

Using models:

- Probability of precipitation
- Probability of runoff for each nodes
- Highest capacity determine by the highest precipitation
- Desire reliability determine the required capacity for BMPs.

Sewer System Network With Layout of BMPs

How Network of BMPs cover the area:

Nodes of the network

19

Sequence diagram- Create new design for

Activity Diagram- Crate new design for road construction

Systems engineering is broadly concerned with the planning and management. Incorporating this system with water management, can lead to the systematic solutions:

- Determine responsibilities of all stakeholders or users.
- Activity plan which is ready to be used by project managers for each specific section.
- Detail oriented with holistic view.

Question?

Email: mojab1@morgan.edu

Morgan State University Department of Industrial and System Engineering

REFRENCES

- 1. District of Colombia, Water and Sewer Authority
- 2. https://dcwater-opendata.socrata.com/Sewer-Infrastructure/SSO-2018/t8v6-xks8
- Buede, D. M., & Miller, W. D. (2016). The engineering design of systems: models and methods. John Wiley & Sons.
- 4. Tsang, Curtis, Lau, Clarence, Leung, Ying, "Object-Oriented Technology",
- 5. McGraw-Hill, Boston, Massachusetts, 2005
- 6. Dennis, A., Wixom, B., Roth, R., "Systems Analysis and Design," John Wiley and
- 7. Sons, Inc., Hoboken, N.J., 6th Edition, 2015.
- 8. Naval Systems Engineering Guide, October 2004.
- 9. Hirschman, D. J., & Kosco, J. (2008). Managing stormwater in your community: a guide for building an effective post-construction program. Center for Watershed Protection.